Recruitment of RNA polymerase II cofactor PC4 to DNA damage sites

نویسندگان

  • Oliver Mortusewicz
  • Wera Roth
  • Na Li
  • M. Cristina Cardoso
  • Michael Meisterernst
  • Heinrich Leonhardt
چکیده

The multifunctional nuclear protein positive cofactor 4 (PC4) is involved in various cellular processes including transcription, replication, and chromatin organization. Recently, PC4 has been identified as a suppressor of oxidative mutagenesis in Escherichia coli and Saccharomyces cerevisiae. To investigate a potential role of PC4 in mammalian DNA repair, we used a combination of live cell microscopy, microirradiation, and fluorescence recovery after photobleaching analysis. We found a clear accumulation of endogenous PC4 at DNA damage sites introduced by either chemical agents or laser microirradiation. Using fluorescent fusion proteins and specific mutants, we demonstrated that the rapid recruitment of PC4 to laser-induced DNA damage sites is independent of poly(ADP-ribosyl)ation and gammaH2AX but depends on its single strand binding capacity. Furthermore, PC4 showed a high turnover at DNA damages sites compared with the repair factors replication protein A and proliferating cell nuclear antigen. We propose that PC4 plays a role in the early response to DNA damage by recognizing single-stranded DNA and may thus initiate or facilitate the subsequent steps of DNA repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dynamic model for PC4 coactivator function in RNA polymerase II transcription.

Human positive cofactor (PC4) acts as a general coactivator for activator-dependent transcription by RNA polymerase II. Here we show that PC4 coactivator function, in contrast to basal (activator-independent) transcription, is dependent both on TATA binding protein (TBP)-associated factors (TAFs) in TFIID and on TFIIH. Surprisingly, PC4 strongly represses transcription initiation by minimal pre...

متن کامل

The single-strand DNA binding activity of human PC4 prevents mutagenesis and killing by oxidative DNA damage.

Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Saccharomyces cerevisiae mutants lacking their PC4 ortholog Su...

متن کامل

p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage.

The tumor suppressor protein p53 regulates transcriptional programs that control the response to cellular stress. We show that distinct mechanisms exist to activate p53 target genes as revealed by marked differences in affinities and damage-specific recruitment of transcription initiation components. p53 functions in a temporal manner to regulate promoter activity both before and after stress. ...

متن کامل

Cockayne syndrome B protein regulates recruitment of the Elongin A ubiquitin ligase to sites of DNA damage

Elongin A performs dual functions as the transcriptionally active subunit of RNA polymerase II (Pol II) elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that ubiquitylates Pol II in response to DNA damage. Assembly of the Elongin A ubiquitin ligase and its recruitment to sites of DNA damage is a tightly regulated process induced by DNA-dama...

متن کامل

Regulation of transcription by the viral activator VP16

Transcription initiation by RNA polymerase II is finely controlled by a multitude of activators and regulatory factors. The Mediator complex is the central coactivator that enables a response of RNA polymerase II to activators and repressors. During this thesis an inducible VP16 model system was established, which allowed analysis of transcription initiation. Formation of the transcription comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2008